
J

/

ORIGINAL. PAP__EIS
OF POOR QUALITY

PARALLEL ALGORITHM FOR DETERMINING MOTION VECTORS IN ICE

FLOE IMAGES BY MATCHING EDGE FEATURES

M. Manohar, H. K. Ramapriyan and J. E Strong

NASA/Goddard Space Hight Center Space Data and Computing Di_ision, Information

Systems Facility, Code 636, Greenbelt, Maryland 20771

ABSTRACT

A parallel algorithm is described to determine motion vectors of

ice floes using time sequences of images of the Arctic ocean

obtained from the Synthetic Aperture Radar (SAR) instrument

flown on-board the Seasat spacecraft. Time intervals between

two successive images of a given region can be as much as three

days. During this period, large translations and rotations of ice

floes can occur. Therefore, conventional local correlation tech-

niques which perform searches in a small neighborhood to detect

translated features have a very small chance of success. To

account for large translations and rotations, it is necessary to

perform large area searches in a three dimensional space (two

translational and one rotational). This makes conventional corre-

lation techniques computationally intensive even on a high-

speed parallel computer such as the Massively Parallel Processor

(MPP). In this paper we describe a parallel algorithm which is

implemented on the MPP for locating corresponding objects

based on their translationally and rotationally invariant features.

The algorithm first approximates the edges in the images by

polygons or sets of connected straight-line segments. Each such

"edge structure" is then reduced to a "seed point". Associated

with each seed point are the descriptions (lengths, orientations

and sequence numbers) of the lines constituting the correspond-

ing edge structure. A parallel matching algorithm is used to

match packed arrays of such descriptions to identify correspond-

ing seed points in the two images. The matching algorithm is

designed such that fragmentation and merging of ice floes are

taken into account by accepting partial matches. The technique

has been demonstrated to work on synthetic test pauems and real

image pairs from Seasat in times ranging from .5 to 0.7 seconds

for 128 x 128 images.

INTRODUCTION

Sequential images of ice floes in the Arctic ocean were

obtained from the Synthetic Aperture Radar (SAR) flown on-

board the Seasat spacecraft in 1978. Using time sequences of

these images, it has been shown in the literature that it is possible

to map ice motion. The approach taken is to match recognizable

features in the ice field which are imaged from two successive

orbits. The matching procedures have been traditionally manual

and time consuming. In order to perform this task routinely on

a large number of images, it is necessary to develop automated

analysis techniques. Recently, several automated techniques of

estimating ice motion using cross correlations have been pro-

posed (for example, [1-31). Collins [3] posed the problem of

finding a field of displacements between two successive images

as an estimation problem. The typical time interval between two

images of a given region is of the order of three days. During this

period, large differential translations and rotations of ice floes

can occur. Therefore, conventional local correlation techniques

which perform searches in small local neighborhoods for dis-

placed features have a very small chance of success. To account

for large translations and rotations, it is necessary to perform

large area searches in a three dimensional space (one rotational

and two translational dimensions). These factors make correla-

tion techniques computationally intensive even on a high-speed

parallel computer such as the Massively Parallel Processor

(MPP). Additional problems specific to ice floe images are

fragmentation and merging during the time interval between the

images. This requires approximate matches of ice floes from one

image to the parts of larger ice floes from the other images. This

problem is referred to as segment matching in the literature [4].

The work reported in this paper is an effort to automate ice

floe matching in computationally feasible times (a few seconds

for a pair of 512 x 512 images) using the MPP. In our approach

the images are abstracted as line models of the boundaries of

dominant objects (ice floes) in the image, and these models are

matched using parallel matching techniques. The boundaries of

the dominant objects are extracted by edge detection algorithms

and the edges are segmented into set of lines by fitting polygons

or connected sets of straight lines to the edge data. Suchpolygons

or connected sets of straight lines will be referred to as edge

structures. Now the problem is to match corresponding edge

structures in the two images. Edge structure models have been

used in the literature for matching cloud images [5] and terrain

scenes [6]. Both these techniques are essentially sequential and

are not considered segment matching. Davis [4] uses a relaxation

technique for segment matching of edge structures. Initially,

figures of merit are assigned to the matches between pairs of

angles on two edge structures. Relaxation methods are then used

u.s. Government Work. Not protected by

U.S. copyright.

343

tofind acceptable combinations of these matches. This method

is also sequential and is not a practical solution for images
containing thousands of edge structures.

THE ALGORITHM

The algorithm presented in this paper consists of the follow-

ing steps, each of which is implemented in parallel. The edges

of ice floe images are obtained by a suitable edge detection

algorithm. The edges obtained are further subjected to some

preprocessing such as thinning and eliminating isolated edge

points. A connected component labeling algorithm [7] is applied

to the edge map to obtain a label array, LBL. This algorithm

locates a seed point in each connected set of edge points in the

edge map and assigns the address of the seed point to all edge

points in the connected set. Next, each edge is decomposed into

a set of straight line segments. This is accomplished by detecting

the corner points in the edge map. The cornel" point detection

algorithm examines a local window (typically 7 x 7) and fits a

straight line passing through its center. The fitting error, equal to

the sum of the perpendicular distances from the edge points of the

window to the fitted line is computed. The locations at which this

error function has local maxima are identified as corner points.

By assigning O's to all corner points in the edge map the

connected sets of edge points are separated into straight line

segments to obtain a segmented edge map. Now, the length of

each straight line segment is computed by shrinking the seg-

mented edge map and counting the number of shrink operations

each segment undergoes. The lengths so computed are stored in

an array LEN, with the mid-points of each line segment contain-

ing its length and all other points containing 0. The orientation

of each line segment is computed by applying the Hough trans-

form to local windows (typically 5 x 5) surrounding its mid-

point. This information is stored in an array, D1R, at addresses

corresponding to the mid-points of the line segments. Next,

sequence numbers are assigned to all line segments within each

connected component indicating the order in which they are

connected. This algorithm processes the edge map and LBL
arrays to produce sequence numbers. This information is stored

in an array, SEQ. Now, the quadruple _BL, SEQ,DIR, LEN)

provides a complete description of the edge structures in the

image. These quadruples are sorted with LBL and SEQ as the

primary and secondary keys, respectively, using a bitonic sorting

algorithm [12]. This brings all data values of the arrays together

into adjacent processing elements. Note that the arrays of sorted

attributes is significantly smaller than the original images. This

can make the matching more efficient, especially for images

significantly larger than the n x n processing array if attribute

records are packed by processing n x n segments of the images.

These sorted arrays obtained from two images are then matched

using a combination of global and local correlations. In the

following sections we describe each of these steps in more detail.

Preprocessing:

The preprocessing step consists of obtaining the boundary of

the dominant objects of the ice floe images and applying thinning

and eliminating isolated edge points. In the present work,

various edge detection techniques such as Marr-Hildreth's zero

crossing detection [8], Canny's algorithm [9], and Spatially

Constrained Clustering (SCC) [Tilton, 10] were applied to the ice

floe images. Both Marr-Hildreth's and Canny's algorithms gave

unacceptable results. The zero crossings obtained by convolving

the Laplacian of Guassian with the image combined the bounda-

ries of the dominant objects with several other details and so it

was difficult to delineate the boundaries from the zero crossings.

Larger filter sizes could solve this problem to some extent but the

edge location accuracy becomes poor. The Canny's algorithm

also has the same problem for the ice floe images. The smaller

filter gives unnecessary edges (due to noise and fine texture) and

large filter sizes affect the shape of the boundary. Tiiton's SCC

algorithm [10], which grows regions based on a "best pair

merging" criterion, performed better than the other two in

delineating boundaries of dominant objects. The edge focussing

algorithm by Bergholm [11] performed best for these images.

This edge focussing algorithm is as follows.

1. Initialize a mask (of the size of the image) to 1 's.

2. Detect major edges using Canny's algorithm with large size

Guassian filters (e.g., o = 7.0) and an appropriate threshold

(e.g., 0.1) for the image. Accept edges only at locations where

mask has values 1 as true edge.

3. Dilate the edges obtained in step 2 by one pixel in each

direction and generate a mask which is 1 at all the dilated

edge locations.

4. Now decrease sigma of the filter by 0.5. (It is shown

analytically in [11] that change of sigma by 0.5 can displace

an edge location by at most one pixel on either side of its

previous location). Repeat steps 2 and 3 until the filter size
is 0.5.

In order to speed up convolution the filter size also can be

reduced in steps of two for every iteration starting with a size of
15 x 15.

This algorithm takes about 200 ms for 128 x 128 images on

the MPP to perform 7 iterations with window sizes ranging from

15 x 15 to 5 x 5. The results of the edge detection algorithm are

shown in Fig. 2(a - b) for both the images of the given pair
Fig.l(a-b).

The edges obtained using the above algorithm are one pixel

wide, but they are 4-connected for inclined (other than horizontal

and vertical) lines. The subsequent processes involved require

inclined edges to be 8-connected. A thinning algorithm is used

to reduce such inclined 4-connected edges to 8-connected edges.

344

The thinning algorithm examines a 3 x 3 neighborhood and

replaces the central pixel by 0 under the following conditions:

001 xlx 00x
011 011 011

001 xlx xlx

In the above configurations 0 denotes the absence of an edge
point, 1, the presence and x, a don't care condition. The other

configuration of masks can be obtained by rotating the above
masks by 90 degrees. The elimination of isolated edge points is
straightforward.

Connected Component Labeling:

The connected component labeling algorithm labels each of
the connected edges with a label that is equal to the arrayaddress
of the seed point. The algorithm is discussed in detail in [7]. This

algorithm is based on parallel shrinking and expansion of binary
patterns and requires about 30 ms of MPP time for labeling the
edges. The time required is data dependent and is proportional

to the length of the within-component-path of the longest com-
ponent. The connected component labelling reduces all con-
nected patterns, both open and closed, to single points called seed
points. The connected component labels obtained from the edge
maps are shown in Fig. 3(a-b). The value of the label at a pixel

is coded as its grey level so that all pixels belonging to a given
connected component are displayed with the same grey level
value.

Edge Decomposition:

Each connected component identified above is decomposed

into a set of straight line segments by first identifying the corner
points. The edge points between a pair of comer points are
assumed to form a straight line. Comer points are edge points
where the line direction changes significantly. The algorithm fits
a straight line at every edge point to the connected set of edge
points in a local neighborhood of size w x w (w = 7, typically).

The fitting error (which is sum of perpendiculars from the edge
points onto the fitted line) is c6_n.puted. The local peaks in the
fitting error function correspond _ the comer pixels. The fitting
error function is derived as follows.

' .s i

Let ax + [3= 0 be the equation of the straight line passing through

the origin of a local coordinate system to be fitted to the
f,onnected set of edge points in a w x w local neighborhood.

The error term, e, is sum of perpendiculars from all connected
edges of the local window which is given by

e = E (axi+ yi) 2 (1)
i

The value of a resulting in minimum e is obtained by differen-

flating error, e with respect to ct and equating it to zero.

ot = ._E xiYi / Xi2 (2)
i

The minimum error for the best fit, _ can be obtained by

substituting a from equation 2 in equation 1.

E, = ._yi 2 - (_. xiyi)2/l_ Xi2 (3)
1 1

High values of the errorterm _:mindicate comers because a single
line cannot be fitted to the given set of edge points. Therefore,

local peaks of E correspond to the corner points. The comer
points detected in both images are shown in Fig. 4(a - b)
superimposed over the corresponding edge images.

Length Computation :

The line segment lengths are computed by applying an 8-

connected shrinldng algorithm [7] repeatedly on the edge map
wherein comer points are replaced with O's. The number of
shrinking operations required to reduce each line segment to a
single point corresponds to the length of the line segment. Thus

the lengths of the line segments are stored at their mid- points
(called line-seeds). These points are the locations where all
information needed for matching (such as label, direction, and

length) about the line segments is stored. The length of the
different edge segments are shown in Fig. 5(a-b) for two images.
For displaying length as gray level image its value is propagated
throughout the edge segment. The algorithm however, does not
require this propagation.

Direction Computation :

The direction of each line segment is computed at the line-

seeds using a localized version of the Hough transform. At every
line-seed in the edge map a local neighborhood of size w x w is

examined. For every point in the neighborhood with the same
label as the line-seed, the angle subtended by the line joining it
and the line-seed is computed. A 32-bin histogram of these
angles over the w x w window is computed. This corresponds to
an angular resolution of less than 6 degrees. The slope corre-

sponding to the peak of the histogram is the direction of the edge
segment. The direction of different edge segments are shown in
Fig. 6(a-b) for two images.

Sequence Computation :

An ordered set of direction and length measurements corre-

sponding to a sequence of connected line segments constituting
an edge structure describes the edge structure

completely. The order of occurrence of line segments is essential

345

for this description to be unique. Thus attaching sequence
numbers to all line segments of the edge structures is an impor-

tant step of the algorithm. The sequence numbers are attached to
all edge points constituting the edge structure and the numbers at
the location of line-seeds are retained as line attributes. The

sequence numbers are attached to all points of the polygon
boundary starting from seed points for closed polygons. The

process is slightly different for open edge structures and will be
discussed later. InitiaLly a sequence number of I is attached to all
seed points (starting points) of the polygons. Now a 5 x 5
neighborhood centered at one of the immediate neighbors of

starting point is considered. This point is given the next sequence
number provided none of the other seven neighbors of the
starting point has already been given this number. Then the
position of the starting point is shifted to the current pixel where
sequence number is assigned. This is repeated until no more

assignments are possible. This algorithm is sequential along
perimeter of a given polygon, but operates in parallel on all
polygons.

For open edge structttres the seed points are the mid-points

(rather than end points), so they are not suitable as starting points
for sequence generation. One of the two end points should be
considered as a starting point. To locate the starting point for all
open edge structures in parallel, we proceed as follows. The fine
ends are detected by examining 3x3 windows and counting

number of edge pixels surrounding the central edge pixel. If this
number is equal to I then the central pixel is an end point. This
is valid for thin edges where inclined edges are 8-connected (but
not 4-connected). Then the sequencing algorithm is applied

from the seed points as in the case of closed polygons. The
sequencing algorithm terminates at one of the end points. Now,
it is not difficult to locate unique end points in parallel. The
points where the sequence array has a value greater than 1and the
line-end array has a value of 1are the starting points for open edge
structures.

Thus the sequence computation algorithm treats closed and
open edge structures separately. The open edge structures can
easily be separated from closed edge structures (polygons) by

applying an 8-connected shrinking algorithm. The open edge
structures shrink to isolated points and closed ones are not
affected. By eliminating isolated points after shrinking, the array
will have only closed polygons. To obtain only open edge
structures, the array containing closed polygons is subtracted

from the array of all edge structures. The sequence numbers
obtained by this algorithm have been coded as gray values and
shown in Fig. 7 (a-b). The sequence information, label, length,
and direction are retained only at the line-seed locations for
further processing.

Matching of edge structures:

The four edge structure attributes, namely, label of each edge

structure, sequence numbers of line segments, direction value of

each line segment, and length of each line segment, are stored in
arrays LBL, SEQ, DIR, LEN. In these arrays, all locations except
the line-seed points (defined above) contain O's. Since this data

is quite sparse the matching can be significantly improved by
packing the measurements in the adjacent Processor Elements

(PE) of the MPP. This is accomplished by sorting the edge
structure attribute quadruplets using LBL, and SEQ as primary

and secondary keys, respectively. A parallel bitonic sort algo-
rithm [12] is used for this purpose. The sorting brings each edge
structure attributes into the adjacent PE locations. The quadru-
plet (LBL, SEQ, DIR, LEN) completely characterizes the edge
structures. Since DIR, LEN are sorted using LBL and SEQ as
primary and secondary keys, respectively, the order in which

they occur in adjacent PE's is a complete description of the edge
structures. The matching algorithm essentially looks for similar
list of attributes, DIR and LEN. The array, DIR contains the
directions of line segments. The angle between the adjacent sides

is used for matching. This can be obtained by a single absolute
difference operation of DIR values contained in adjacent PE's. If
DIR alone is used, the polygon matching is not affected by
rotation as well as scale changes. It is necessary to use both DIR
and LEN to ensure that significantly different scales of similar
objects are not considered identical.

The sorted arrays (LBL,SEQ,DIR,LEN) for each of the

two images are treated as one dimensional vectors for subsequent
matching. (The snake-shift feature on the MPP is extensively
used for this purpose). To permit matching of open edge
structures in one of the images with closed polygons in the other
without being sensitive to the (arbitrary) starting segments in the

polygons and to avoid sensitivity to reversal of the sequencing of
segments in the edge structures, the quadruplets for each edge
structure arc duplicated in the forward and reverse direction
respectively, for the first and second images. Thus for example,
the directional attributes for an n-sided edge structure in the first
image are stored as D1, D2 Dn, D1, D2 Dn and for an m-
sided edge structure in the second image as dl, d2 dm, din,

dm-1 dl. The parallel matching of polygons proceeds as
follows.

1.

2.

Normalize DIR and LEN features of each polygon

Perform global correlation of DIR features and LEN fea-

tures separately for both images. That is compute Co =
DIRI®DIR2 and Ca = LENI®LEN2, where ® denotes
correlation. This is done efficiently using Fast Fourier
Transform.

.

4.

Locate local peaks in C dand Ca.

Shift DIR2 by an amount equal to the peak coordinate and
subtract from DIR1. Find sum of absolute differences

within a local window of size 5 around each point.

5. Where the sum of absolute differences is less than a

predetermined threshold, load the corresponding labels in

346 '._ '

.

7.

the output array.

Set DIR1 and DIR2 at locations of matched labels to 0.

Repeat steps 2 to 6 until no more matches are possible or
DIR1 or DIR2 contains all O's.

RESULTS AND DISCUSSIONS

Using the matching technique described in this paper wc
are able to match ice floes which have undergone significant

translations and rotations during the time interval between two
images (Fig. 8). The edge extraction significantly affects the

results of the algorithm. We have demonstrated using test
patterns that our algorithm is able to match polygons accurately
which have undergone significant translations, rotations, frag-
mentation, and merging. These synthetic images are shown in
Fig. 9(a-b). The corresponding edge structures are shown in Fig.

10. The algorithm has been tested with subimages of ice floe
images and found to yield satisfactory results.

In the present work, we have established correspondence
among objects contained in the images by matching the sides
having same subtended angles and lengths. Using the informa-
tion so derived, it is possible to establish correspondence among

the pixels and thus compute optical flow.

The computation times are data dependent. For the 128

x 128 test image, where the edge detection step was not needed
the algorithm took approximately 500 msec on the MPP. For ice
floe images, 700 msec of the MPP time was required including
the time needed for the edge focussing algorithm. However, it is

to be noted that for larger images than 128 x 128, one would
process all 128 x 128 segments to obtain the edge structures and
pack the atwibute quadruples and then perform the matching.

Vol. C-24, pp. 966-976, Oct 1975.
6. Clark C. S., Conti, D, K. Eckardt, W. O., McCulloh, T.A.,

Nevatia, R., and Tseng, D. Y,,'Matehing of Natural Terrain
Scenes,' Poc of the IEEE Conf on Pattern Recognition and

Image Processing, pp. 217-222, 1980.
7. Manohar M., Rarnapriyan H.K., ' Connected Component

Labeling of Binary Images on Mesh Connected Massively

Parallel Processor,', to Appear in Computer Vision Graphics
and Image Processing', Jan 1989.

8. Mart D. C., Hildreth E., ' Theory of Edge Detection,' Proc
R. Soc. London, B 207, pp. 187-217, 1980.

9. Canny J., 'Computational Approach to Edge Detection,'
IEEE Trans on Patten Anal. Mach. Intell. Vol. PAMI-8, pp.
679-698, Nov 1986.

10. Tilton J., 'Image Segmentation by Parallel Region Growing
with Application to Data Compression and Image Analysis,
Proc of 2nd Symposium on the Frontiers of Massively
Parallel Computation, Oct 10-12, 1988.

11. Bergholm F., 'Edge Focussing', IEEE Trans. on Pattern

Anal. and Math. Intell. Vol. PAMI-9, pp. 726-741, 1987.
12. Dorband J. E., 'Sort Computation', Proc of 2nd Symposium

on the Frontiers of Massively Parallel Computation, Oct 10-
12, 1988.

NOTE: All figures appear as Color Plates IV, V, and VI, on

pp. 696--698 of these Proceedings.

REFERENCES

1. Fily M., and Rothrock D. A., 'Sea Ice Tracking by nested
correlations', IEEE Trans on Geoscience and Remote Sens-

ing,' Vol. GE-25, pp. 570-580, Sept 1987.
2. Vesecky J. F., Smandani, R., Smith M.P., Daida, J. M., and

Bracewell R, N., 'Observation of Sea-Ice Dynamics Using

Synthetic Aperture Radar Images : Automated Analysis,'
IEEE Trams on Geoscience and Remote Sensing, Vol. 26, pp.
38-48, Jan 1988.

3. Collins M. J., Emery W. J., ' A Computational Method for
Estimating Sea Ice Motion in Sequential Seas,at Synthetic
Aperture Radar Imagery by Matched Filtering,' J. of Geo-
physical Research, Vol. 93, pp. 9241-9251, Aug, 1988.

4. Davis L. S., 'Shape Matching Using Relaxation Techniques'
IEEE Trans. on Pattern Anal. and Mach, Intell. Vol. PAMI-

1, pp. 60- 72, Jan 1979.
5. Aggarwal J. K., and Duda, R. O., 'Computer Analysis of

Moving Polygonal Images,' IEEE Trans. on Computers,

347

